The Finite Volume, Finite Element, and Finite Difference Methods as Numerical Methods for Physical Field Problems
نویسندگان
چکیده
II. Foundations 5 A. The Mathematical Structure of Physical Field Theories . . . 5 B. Geometric Objects and Orientation . . . . . . . . . . . . . 7 C. Physical Laws and Physical Quantities . . . . . . . . . . . . 15 D. Classification of Physical Quantities . . . . . . . . . . . . . 21 E. Topological Laws . . . . . . . . . . . . . . . . . . . . . . . 26 F. Constitutive Relations . . . . . . . . . . . . . . . . . . . . . 30 G. Boundary Conditions and Sources . . . . . . . . . . . . . . 35 H. The Scope of the Structural Approach . . . . . . . . . . . . 36
منابع مشابه
Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملAnalytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet
In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کامل